Devin Camenares

I am interested in developing a better understanding of molecular biology, towards the end of engineering living systems to solve real world problems. This passion drives my research interests, teaching, and other activities.


Synthetic Biology and iGEM

The emerging discipline of synthetic biology holds tremendous potential for both basic research and innovative applications. In some ways, synthetic biology is a more ambitious expression of the same impulse behind most contemporary biotechnology; engineering entire pathways instead of single proteins and enzymes. However, this field goes beyond most traditional efforts in both scope and approach.

Synthetic biology also represents a revolution in terms of who can access drive research efforts. Every year, important advancements in this field are made by teams of undergraduates competing in the International Genetically Engineered Machine competition (iGEM). The iGEM competition is a new and exciting model for scientific research and technological development. I have been involved in iGEM for many years (since 2005), most recently as a judge and faculty mentor (Kingsborough Community College team in 2016 - - and 2017 - ). As the new iGEM coordinator at Alma College, I will be facilitating the development of an award winning team of students. To learn more about the wonderful iGEM competition and see examples of team projects from years past, please visit 


Co-evolution Bioinformatics

Often, parts of macromolecules that appear to be weakly conserved are ignored or not considered a priority for analysis. However, many proteins and RNA molecules make functionally important and sequence specific contacts with other macromolecules. For some of these contacts, they will not be conserved individually, but the pairs of residues will more commonly be found together. Identification of these co-evolved pairs can be done through bioinformatic means.

I am developing new software tools to more rigorously predict inter-molecular interactions and co-evolution. These new tools will be trained upon molecules involved in translation, such as tRNAs, amino-acyl tRNA synthetases (AARS), and ribosomal proteins, so that we may better understand this dynamic process. This is critical for efforts to manipulate bacterial gene expression. For example, this research may lead to new ways to re-engineer tRNA-AARS pairs and expand the types of proteins that can be created in a cell.


For more (albeit outdated) information about me, my research interests, and my teaching philosophy, please visit my bioinformatics page: 


Assistant Professor, iGEM Coordinator



Educational Background

  • Ph.D., Molecular and Cellular Biology, Stony Brook University (Karzai Laboratory)
  • B.Sc, Biotechnology, Rutgers University (Cook College, now SEBS)

I am...

I am a new faculty at Alma, trained in molecular biology and biochemistry. I focus on learning concepts and connections, engaging students with real-world problems and their synthetic biology solutions.

My career at Alma began in


I'm an expert in

synthetic biology

My expertise:

  • Research in Synthetic Biology and the International Genetically Engineered Machine competition (iGEM).
  • Gene expression control in bacteria.
  • Co-evolution of translation and gene expression components.

Other recent accomplishments:

Mentored the Kingsborough Community College iGEM team in 2016 and 2017 (bronze medal winner)

Connect with me: